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Abstract

We introduce some theory and applications of linear regression and logistic regression.
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1 Linear Regression

Suppose we wish to determine if there is a linear relationship between two variables; e.g. weight and blood
pressure. We would collect data in the form of ordered pairs (x, y); in this example, x measures weight and
y measures blood pressure. Suppose we’ve collected n data points, {(x1, y1), (x2, y2), . . . , (xn, yn)}. We can
plot these observations in the plane and visually inspect if they display a linear shape. However, eyeballing is
neither particular e�cient nor generally e�ective. So let’s investigate a formulaic approach.

1.1 Least Squares

We will start in the context where we have one independent variable. Once we’ve developed the theory corres-
ponding to that case, we’ll move on to several independent variables.

Suppose we have the observed data {(x1, y1), (x2, y2), . . . , (xn, yn)} and a proposed model

L(x) = mx+ b.

�e standard method of least squares to to compute

n∑
j=1

(mxj + b− yj)2
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which can be visualized as the sum of the square distance between the predicted values and the observed values.
As a point of comparison, notice that the actual distance between the predicted values and the observed values
is given by

|mxj + b− yj | =
√

(mxj + b− yj)2.

One reason to consider the square distances is to facilitate optimization. Note that

∂

∂m
|mxj + b− yj | = ±xj

and
∂

∂b
|mxj + b− yj | = ±1.

�is doesn’t quite o�er any information to minimize the distances. However, observe that

∂

∂m

n∑
j=1

(mxj + b− yj)2 =
n∑

j=1

2xj(mxj + b− yj) = 2mΣ(x2) + 2bΣx− 2Σ(xy)

and
∂

∂b

n∑
j=1

(mxj + b− yj)2 =

n∑
j=1

2(mxj + b− yj) = 2mΣx+ 2nb− 2Σy.

Since our goal is to optimize, we can set up the system{
2mΣ(x2) + 2bΣx− 2Σxy = 0

2mΣx+ 2nb− 2Σy = 0
⇐⇒

{
mΣ(x2) + bΣx = Σ(xy)

mΣx+ nb = Σy

which we could rewrite as a matrix equation:[
Σ(x2) Σx

Σx n

] [
m
b

]
=

[
Σ(xy)

Σy

]
�e le�-most matrix has an inverse if and only if its determinant, nΣ(x2)− (Σx)2, is non-zero. In particular,
the inverse of the le�-most matrix would be

1

nΣ(x2)− (Σx)2

[
n −Σx
−Σx Σ(x2)

]
which we can then le�-multiply to find solutions form and b. One can verify that these solutions are

m =
nΣ(xy)− (Σx) (Σy)

nΣ (x2)− (Σx)2

and
b =

Σy −mΣx

n
= ȳ −mx̄.
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1.1.1 Perpendicular Approach

One may wonder if minimizing the distances in the “vertical” direction is really the best way. Why not minimize
against the shortest distance from a point to a line, a “perpendicular” approach? Let’s explore this route for the
sake of being thorough. For an e�ectively identical exposition on this topic, please see Wolfram MathWorld.

�ough we explore this approach in the case of one independent variable, we will be opting for the standard
optimization when we extend to several independent variables in Section 1.2.1.

Given our proposed linear model L(x) = mx+ b, consider the observed data point (xj , yj). Note that the
line passing through (xj , yj) that is perpendicular to L(x) is given by

m(y − yj) = −(x− xj).

Assumingm 6= 0, we have

y = − x
m

+
xj +myj

m

and use this to solve for the intersection between the two lines:

mx+ b = − x
m

+
xj +myj

m
(m2 + 1)x = xj +myj − bm

x =
xj +myj − bm

m2 + 1

and then

y = m · xj +myj − bm
m2 + 1

+ b

=
mxj +m2yj + b

m2 + 1
.

Observe that
xj +myj − bm

m2 + 1
− xj =

myj − bm−m2xj
m2 + 1

and that
mxj +m2yj + b

m2 + 1
− yj =

mxj + b− yj
m2 + 1

.

�en the square distance is given by(
myj − bm−m2xj

m2 + 1

)2

+

(
mxj + b− yj
m2 + 1

)2

= m2 · (mxj + b− yj)2

(m2 + 1)2
+

(mxj + b− yj)2

(m2 + 1)2

=
(mxj + b− yj)2

m2 + 1
.

�e partial derivative with respect to b has only changed by a multiplicative constant so we still have that
b = ȳ −mx̄. Explicitly,

∂

∂b

n∑
j=1

(mxj + b− yj)2

m2 + 1
=

n∑
j=1

2

m2 + 1
· (mxj + b− yj) =

2

m2 + 1
· [mΣx+ nb− Σy] .
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To address the partial derivative with respect tom, note that

∂

∂m

(mxj + b− yj)2

m2 + 1
=

2xj(m
2 + 1)(mxj + b− yj)− 2m(mxj + b− yj)2

(m2 + 1)2

= 2 · mxj + b− yj
(m2 + 1)2

· (xj − bm+myj) .

�en
n∑

j=1

2 · mxj + b− yj
(m2 + 1)2

· (xj − bm+myj) = 0

if and only if
n∑

j=1

(mxj + b− yj)(xj − bm+myj) = 0.

Observe that

(mxj + b− yj)(xj − bm+myj) = m2xjyj −m2bxj +mx2j −my2j + 2mbyj −mb2 + bxj − xjyj

which means

m2Σxy −m2bΣx+mΣx2 −mΣy2 + 2mbΣy − nmb2 + bΣx− Σxy = 0.

We collect the terms with factors of b and simplify. First, we simplify the terms with a single power of b:

−m2bΣx+ 2mbΣy + bΣx = −m2(ȳ −mx̄)Σx+ 2m(ȳ −mx̄)Σy + (ȳ −mx̄)Σx

= −m2ȳΣx+m3x̄Σx+ 2mȳΣy − 2m2x̄Σy + ȳΣx−mx̄Σx

=
1

n

[
m3 (Σx)2 + 2m (Σy)2 − 3m2ΣxΣy + ΣxΣy −m (Σx)2

]
Next we simplify the term with a square b:

−nmb2 = −nm(ȳ −mx̄)2

= −nm((ȳ)2 − 2mx̄ȳ +m2(x̄)2)

= −nm(ȳ)2 + 2nm2x̄ȳ − nm3(x̄)2

=
1

n

[
−m(Σy)2 + 2m2ΣxΣy −m3(Σx)2

]

Hence,

−m2bΣx+ 2mbΣy + bΣx− nmb2 =
1

n

[
m (Σy)2 −m2ΣxΣy + ΣxΣy −m (Σx)2

]
.

Multiplying

m2Σxy −m2bΣx+mΣx2 −mΣy2 + 2mbΣy − nmb2 + bΣx− Σxy = 0

by n obtains

m2 (nΣxy − ΣxΣy) +m
(
nΣx2 − nΣy2 + (Σy)2 − (Σx)2

)
− (nΣxy − ΣxΣy) = 0
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or

m2 +m · nΣx2 − nΣy2 + (Σy)2 − (Σx)2

nΣxy − ΣxΣy
− 1 = 0.

Let

a = −1

2
· nΣx2 − nΣy2 + (Σy)2 − (Σx)2

nΣxy − ΣxΣy

and notice that the solutions to

m2 +m · nΣx2 − nΣy2 + (Σy)2 − (Σx)2

nΣxy − ΣxΣy
− 1 = 0

arem = a±
√
a2 + 1.

�ough this method does yield results, the computational overhead is greater than the method presented
in Section 1.1. One may also imagine how tedious this approach would become when there is more than one
independent variable. We will provide some examples to examine potential di�erences between the methods.

1.2 Examples

Example 1.
�e following tables contains observed data and some auxiliary quantities. All values were computed using a
spreadsheet program so some rounding errors may occur.

X Y

1.912947521 23.65814

1.759317921 22.94887519

3.311278431 31.76267182

1.093271003 18.98024112

2.175468756 24.89669254

2.457015287 26.67881422

0.2588599 14.24211082

2.648008717 27.91796173

2.397334955 26.54132455

2.735146011 28.24804238

2.824624841 28.87492603

2.149242246 24.89958201

1.866919364 23.28936564

1.436861463 20.96720411

2.202221549 25.36419647

1.324341565 20.4037108

3.387594944 32.0846165

1.003282658 18.45854908

0.997801647 18.39084681

2.186349182 25.03012205

n 20

ΣX 40.12788796

ΣY 483.6379939

ΣX2 93.00063303

ΣY 2 12102.0174

ΣXY 1041.618954

Vertical
m 5.705388374

b 12.73464042

Perpendicular
m1 5.708394706

b1 12.72860853

m2 −0.175180598

b2 24.53338106

In the values underneath the ‘Perpendicular’ label,m1 = a+
√
a2 + 1 andm2 = a−

√
a2 + 1 where

a = −1

2
· nΣx2 − nΣy2 + (Σy)2 − (Σx)2

nΣxy − ΣxΣy
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as in the derivations. �en b1 = ȳ − m1x̄ and b2 = ȳ − m2x̄. We see that the values m1 and b1 are the
appropriate linear model for the observed data and that the di�erence between the standard least squares model
is minimal.

Example 2.
We now consider an example where the data are not approximately linearly related as they were in Example 1.
�e format follows the format in Example 1. Again, all values were computed using a spreadsheet program so
some rounding errors may occur.

X Y

1.912947521 54.03677792

1.759317921 43.08854573

3.311278431 74.00096191

1.093271003 28.76392401

2.175468756 38.93272068

2.457015287 45.88985983

0.2588599 52.27123894

2.648008717 25.41396484

2.397334955 48.45117487

2.735146011 37.80523453

2.824624841 29.72250069

2.149242246 45.55706305

1.866919364 50.00450035

1.436861463 48.97881454

2.202221549 22.65972283

1.324341565 46.92592202

3.387594944 59.66573502

1.003282658 46.83425797

0.997801647 36.29521649

2.186349182 62.50839378

n 20

ΣX 40.12788796

ΣY 897.80653

ΣX2 93.00063303

ΣY 2 43408.48419

ΣXY 1833.13123

Vertical
m 2.544568191

b 39.78491914

Perpendicular
m1 97.34937002

b1 −150.4309042

m2 −0.01027228

b2 44.91093675

Example 3.
In this example, we use the same X values as in Example 2 but use Y = (X − 2)2. Particularly, there is
a dependence relationship between X and Y but it’s nonlinear. As usual, all values were computed using a
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spreadsheet program so some rounding errors may occur.

X Y

1.912947521 0.007578134

1.759317921 0.057927863

3.311278431 1.719451124

1.093271003 0.822157474

2.175468756 0.030789284

2.457015287 0.208862973

0.2588599 3.031568849

2.648008717 0.419915297

2.397334955 0.157875066

2.735146011 0.540439657

2.824624841 0.680006128

2.149242246 0.022273248

1.866919364 0.017710456

1.436861463 0.317125012

2.202221549 0.040893555

1.324341565 0.456514321

3.387594944 1.925419729

1.003282658 0.99344546

0.997801647 1.00440154

2.186349182 0.034726018

n 20

ΣX 40.12788796

ΣY 12.48908119

ΣX2 93.00063303

ΣY 2 19.84224531

ΣXY 22.79170937

Vertical
m −0.181475445

b 0.988565376

Perpendicular
m1 1.102954752

b1 −1.588508176

m2 −0.906655507

b2 2.44356259

1.2.1 Generalization to Several Variables

Now supposewe have k independent variablesx1, x2, . . . , xk whichwe can represent as an k-dimensional vector
x = (x1, x2, . . . , xk). We wish to find a linear model for n observations {(x1, y1), (x2, y2), . . . , (xn, yn)}.
Suppose our linear model is

L(x) = m • x + b = m1x1 +m2x2 + · · ·+mkxk + b.

�en the method of least squares asks us to minimize

n∑
j=1

(m • xj + b− yj)2

where xj = (xj,1, xj,2, . . . , xj,k). �en, for ` = 1, 2, . . . , k,

∂

∂m`

n∑
j=1

(m • xj + b− yj)2 = 2

n∑
j=1

xj,`(m • xj + b− yj)

and
∂

∂b

n∑
j=1

(m • xj + b− yj)2 = 2
n∑

j=1

(m • xj + b− yj).

Setting these equal to zero allows us to phrase the problem in terms of a matrix equation as before when we
only had one independent variable. �en the problem of the linear regression hinges on finding an inverse for a
square matrix.
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As an example, let’s consider the case when we have two independent variables, x and y. We wish to find
constants a, b, and c so that L(x, y) = ax+ by + c best fits the set of observations

{(x1, y1, z1), (x2, y2, z2), . . . , (xn, yn, zn)}.

�e equations we have now are

∂

∂a

n∑
j=1

(axj + byj + c− zj)2 = 2
n∑

j=1

xj(axj + byj + c− zj) = 0,

∂

∂b

n∑
j=1

(axj + byj + c− zj)2 = 2
n∑

j=1

yj(axj + byj + c− zj) = 0,

and
∂

∂c

n∑
j=1

(axj + byj + c− zj)2 = 2
n∑

j=1

(axj + byj + c− zj) = 0.

A�er some simplification, we obtain 
aΣx2 + bΣxy + cΣx = Σxz

aΣxy + bΣy2 + cΣy = Σyz

aΣx+ bΣy + nc = Σz

which is equivalent to the matrix equationΣx2 Σxy Σx
Σxy Σy2 Σy
Σx Σy n

ab
c

 =

Σxz
Σyz
Σz


As an additional example, the matrix equation corresponding to three independent variables is

Σx2 Σxy Σxz Σx
Σxy Σy2 Σyz Σy
Σxz Σyz Σz2 Σz
Σx Σy Σz n



a
b
c
d

 =


Σxw
Σyw
Σzw
Σw


1.3 Coe�cient of Determination

For a set {y1, y2, . . . , yn} of observations and a corresponding set of predictions {ŷ1, ŷ2, . . . , ŷn}, we define

R2 = 1−
∑n

j=1(yj − ŷj)2∑n
j=1(yj − ȳ)2

=

∑n
j=1(yj − ȳ)2 −

∑n
j=1(yj − ŷj)2∑n

j=1(yj − ȳ)2
.

Notice that, in this computation, if yj ≈ ŷj , then R2 ≈ 1. Also, R2 6 1 for any possible collection of
predictions ŷj .

Example 4.
We compute the R2 values for the data in Examples 1, 2, and 3.

Example 1
Vertical Perpendicular
m, b m1, b1 m2, b2

R2 0.999457187 0.99945691 −0.062317741
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Example 2
Vertical Perpendicular
m, b m1, b1 m2, b2

R2 0.026036158 −36.11573083 −0.000210637

Example 3
Vertical Perpendicular
m, b m1, b1 m2, b2

R2 0.034149875 −1.67655224 −0.511162167

2 Logistic Regression

We’llmotivate the scenariowith a single independent variable. Consider a data set {(x1, y1), (x2, y2), . . . , (xn, yn)}
where yj ∈ {0, 1} for all j = 1, 2, . . . , n. One can think of this as a two-coloring of the real numbers
x1, x2, . . . , xn. In particular, let xj be colored red if yj = 1 and blue otherwise. �e goal of logistic regression
is to find constantsm and b so that

p(x) =
exp(mx+ b)

1 + exp(mx+ b)

is a “good fit” for the data. We’ll discuss what we mean by a good fit shortly.
�e resulting model produces a way to decide whether new observations should be classified as 0 or 1 in the

following way. First, notice that 0 < p(x) < 1 for any x. We can decide on a threshold p0 and then, for any
observation x, say that x is red if p(x) > p0 and blue otherwise. �e choice of threshold will depend on the
potential consequences of labeling something as red/blue. However, given the threshold p0, consider

p(x) > p0 ⇐⇒ exp(mx+ b) > p0 + p0 exp(mx+ b)
⇐⇒ (1− p0) exp(mx+ b) > p0
⇐⇒ exp(mx+ b) > p0/(1− p0)
⇐⇒ mx+ b > ln(p0/(1− p0))
⇐⇒ mx+ b− ln(p0/(1− p0)) > 0

�at is, depending on the chosen threshold, our decision boils down to checking the sign of a linear function in
terms of x.

Now, suppose we have {(x1, y1, z1), (x2, y2, z2), . . . , (xn, yn, zn)} where zj ∈ {0, 1}. Like before, we
frame this as a two-coloring where (xj , yj) is red if zj = 1 and blue otherwise. Recall that in the single variable
case, we arrived at a single point which separated the real line into two regions. Here, we will be finding a line in
the plane that aims to separate the blue from the red. Note that we can represent such a line with ax+by+c = 0.
�en, given a point (x, y), we can make a prediction as to red or blue based on the sign of ax + by + c. In a
similar way to the single variable case, we consider

p(x, y) =
exp(ax+ by + c)

1 + exp(ax+ by + c)
.

Notice that if the point (x, y) lies on the line, ax+ by+ c = 0 which means p(x, y) = 0.5. If ax+ by+ c > 0,
then p(x, y) > 0.5 and if ax+ by+ c < 0, then p(x, y) < 0.5. �e larger ax+ by+ c is, the closer p(x, y) is
to 1. In the discussion that follows, we’ll extend to k-many variables.

In one interpretation, the function p(x) is intended to reflect probabilities; that is, p(x) is supposed to
be P (y = 1|x). One reason to choose the form of p(x) is for its relative ease in terms of computation. �e
complication with using the cumulative density for a Gaussian, or normal, distribution is that it’s not expressible
as a closed form function. Some other candidates are translations of the arctangent and the hyperbolic tangent.
Nevertheless, we’ll presently entertain the standard choice.
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2.1 �e Objective

Assume we’ve chosen a prediction function

p(x1, x2, · · · , xk) =
exp(m1x1 +m2x2 + · · ·+mkxk + b)

1 + exp(m1x1 +m2x2 + · · ·+mkxk + b)

given a set

{(x1,1, x1,2, . . . , x1,k, y1), (x2,1, x2,2, . . . , x2,k, y2), . . . , (xn,1, xn,2, . . . , xn,k, yn)}

of observations where yj ∈ {0, 1}. Let m = (m1,m2, . . . ,mk) and xj = (xj,1, xj,2, . . . , xj,k) and notice
that we can rewrite the prediction function as

p(x) =
exp(m • x + b)

1 + exp(m • x + b)
.

We call the quantitiesm1,m2, . . . ,mk, b the weights.
Now we compare the prediction values against the observed values. For any yj = 1, notice that the predic-

tion model says that P (yj = 1|xj) = p(xj) = p(xj)
yj and that (1− p(xj))

1−yj = 1. For any yj = 0, notice
that the prediction model says that

P (yj = 0|xj) = 1− P (yj = 1|xj) = 1− p(xj) = (1− p(xj))
1−yj

and that p(xj)
yj = 1. Assuming all observations are independent, the probability we obtain the observed data

assuming the probabilities given by p(x) is

J(m, b) =

n∏
j=1

p(xj)
yj (1− p(xj))

1−yj .

Now, this is the function we wish to optimize, in particular, to maximize it since that would mean we maximize
the likelihood of the observed data given the predictions determined by p(x). To simplify matters a bit, let’s
find the optima of the corresponding logarithm:

ln (J(m, b)) =

n∑
j=1

yj ln(p(xj)) + (1− yj) ln(1− p(xj))

Observe that

ln(p(xj)) = ln

(
exp(m • xj + b)

1 + exp(m • xj + b)

)
= m • xj + b− ln(1 + exp(m • xj + b))

and

ln(1− p(xj)) = ln

(
1− exp(m • xj + b)

1 + exp(m • xj + b)

)
= ln

(
1

1 + exp(m • xj + b)

)
= − ln(1 + exp(m • xj + b)).
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Hence,

ln(J(m, b)) =
n∑

j=1

yj ln(p(xj)) + (1− yj) ln(1− p(xj))

=

n∑
j=1

yj(m • xj + b− ln(1 + exp(m • xj + b))) + (1− yj)(− ln(1 + exp(m • xj + b)))

=

n∑
j=1

m • xjyj + byj − ln(1 + exp(m • xj + b))

=

 n∑
j=1

k∑
`=1

m`xj,`yj

+ bΣy −
n∑

j=1

ln(1 + exp(m • xj + b)).

�en, for ` = 1, 2, . . . , k,

∂

∂m`
ln(J(m, b)) =

 n∑
j=1

xj,`yj

− n∑
j=1

xj,` exp(m • xj + b)

1 + exp(m • xj + b)
=

n∑
j=1

xj,`(yj − p(xj))

and
∂

∂b
ln(J(m, b)) = Σy −

n∑
j=1

exp(m • xj + b)

1 + exp(m • xj + b)
=

n∑
j=1

yj − p(xj).

Setting these equal to zero doesn’t yield closed form solutions, in general. We will require numerical techniques.
Before we discuss a method to approximate solutions, let’s check concavity by computing the second deriv-

atives. We check concavity since it communicates information concerning local extrema. First, check that, for
` = 1, 2, . . . , k,

∂p

∂m`
=
x`(1 + exp(m • x + b)) exp(m • x + b)− x` exp(m • x + b)2

(1 + exp(m • x + b))2

=
x` exp(m • x + b)

(1 + exp(m • x + b))2

and that

∂p

∂b
=

(1 + exp(m • x + b)) exp(m • x + b)− exp(m • x + b)2

(1 + exp(m • x + b))2

=
exp(m • x + b)

(1 + exp(m • x + b))2
.

It follows that

∂2

∂m2
`

ln(J(m, b)) = −
n∑

j=1

x2j,` exp(m • xj + b)

(1 + exp(m • xj + b))2

for ` = 1, 2, . . . , k and that

∂2

∂b2
ln(J(m, b)) = −

n∑
j=1

exp(m • xj + b)

(1 + exp(m • xj + b))2
.

Unless all xj are zero, the second derivative with respect to any of the weights are negative. Hence, the function
ln(J(m, b)), when restricted to one weight, would attain a unique maximum, if a maximum exists.
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2.2 Gradient Descent

Recall that the direction of most rapid ascent is the gradient. �is section is titled “Gradient Descent” due to
the most common name of this technique which is used to find minima. However, since we’re trying to find a
maximum here, we will be using gradient ascent.

�e basic idea is the following.

1. Initialize (m1,m2, . . . ,mk, b) to be arbitrary.

2. Adjust the (m1,m2, . . . ,mk, b) by moving along the gradient by some scaling constant ρ. �at is, set
the new (m1,m2, . . . ,mk, b) by

mnew
` = m` + ρ ·

n∑
j=1

xj,`(yj − p(xj))

and

bnew = b+ ρ ·
n∑

j=1

yj − p(xj)

�e task of finding an e�cient scaling constant ρ will not be addressed here.

2.3 Examples

Example 5.
Suppose we are given the following observations:

x y x y x y x y

1.17 0 1.27 0 1.16 0 1.45 0

1.33 0 1.12 0 1.36 0 1.25 0

1.33 0 1.30 0 1.42 0 1.33 0

1.72 1 1.70 1 1.88 1 1.71 1

1.58 1 1.81 1 1.70 1 1.63 1

1.82 1 1.75 1 1.63 1 1.90 1

We use a scaling coe�cient of 1 in the gradient ascent and apply 100 iterations. �e equation produced is

0 = 50.54714424495551x− 76.56101204614309

which translates to x ≈ 1.5146456479345755. Graphically,

1.515

Example 6.
Suppose we are given the following observations:

x y z x y z x y z x y z x y z

0.94 0.99 0 1.41 0.62 1 1.05 1.19 0 0.79 1.43 0 1.51 0.64 1

1.42 1.28 1 1.19 1.48 0 0.67 1.21 0 0.72 0.62 0 1.39 0.67 1

0.89 0.87 0 0.91 0.74 0 1.24 1.13 1 0.81 0.95 0 1.11 1.55 0

1.29 1.11 1 1.54 0.81 1 0.98 0.97 0 1.23 0.88 1 0.61 0.60 0

1.26 0.82 1 1.38 0.76 1 1.32 1.20 1 1.06 1.14 0 1.14 1.39 0
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We use a scaling coe�cient of 1 in the gradient ascent and apply 100 iterations. �e equation produced is

0 = 47.49556536544975x− 28.459417864950904y − 24.237777075778855.

Graphically,

x

y
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