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Abstract

We introduce some theory and applications of linear regression and logistic regression.
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1 Linear Regression

N U1 W

Suppose we wish to determine if there is a linear relationship between two variables; e.g. Weight and blood

pressure. We would collect data in the form of ordered pairs (x,y); in this example, £ measures weight and

y measures blood pressure. Suppose we've collected n data points, {(z1,91), (x2,y2), - - -, (Tn, Yn)}. We can

piot these observations in the plane and visually inspect if they display a linear shape. However, eyebailing is

neither particular efficient nor generally effective. So let’s investigate a formulaic approach.

1.1 Least Squares

We will start in the context where we have one independent variable. Once we've developed the theory corres-

ponding to that case, WC711 move on to SCVCI"&] il’ldeCl’lant Variabicsi

Suppose we have the observed data {(z1,91), (x2,92), - ., (Tn,Yn)} and a proposed model
L(z) = mz +b.

ThC standard method OflCﬁSt squarcs to to Compute

n

Z(mxj +b—y;)?

j=1
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which can be visualized as the sum of the square distance between the predicted values and the observed values.
As a point of comparison, notice that the actual distance between the predicted values and the observed values
is given by

[maj +b—y;| = \/(mwj +b—y;)*
One reason to consider the square distances is to facilitate optimization. Note that
0
%|macj +b—y;| = £z,
and
0
%\mxj +b—y;| = £1.

This doesn’t quite offer any information to minimize the distances. However, observe that

0 — "
m Z(mxj +b—y;)? = Z 2xj(max; + b — y;) = 2m%(2?) + 20Xz — 2% (2y)
J=1 j=1
and . .
gb D (maj+b—y;)® =D 2(ma;+b—y;) =2mIz + 2nb — 25y.
J=1 j=1

Since our goal is to optimize, we can set up the system

2mY(z?) 4+ 20%x — 2Xxy =0 PN mY(z?) + b = X(zy)
2mYx + 2nb — 23y =0 mdx + nb =Xy

which we could rewrite as a matrix equation:
S(z?) Szl [m]  [Z(zy)
Yr n||b| | By

The left-most matrix has an inverse if and only if its determinant, n¥(x?) — (Xx)?, is non-zero. In particular,
the inverse of the left-most matrix would be

1 { n . ]
nS(z2) — (Sz)? |—Xz E(2?)
which we can then left-multiply to find solutions for m and b. One can verify that these solutions are

_ n¥(zy) — (Xx) (Xy)
nY (22) — (Sa)?

and
Yy—mdxr  _ _
b= ———— =9y —mzZ.
n
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111 Pcrpcndicular Approach

One may wonder if minimizing the distances in the “vertical” direction is really the best way. Why not minimize
against the shortest distance from a point to a line, a “pcrpcndicular"’ approach? Let’s cxplorc this route for the
sake of being thorough. For an effectively identical exposition on this topic, please see Wolfram MathWorld.
Though we cxplorc this approach in the case of one indcpcndcnt variable, we will be opting for the standard
optimization when we extend to several independent variables in Section 1.2.1.
Given our proposed linear model L(xz) = mz + b, consider the observed data point (:Ej, yj)i Note that the
line passing through (2, y;) that is perpendicular to L(x) is given by

m(y —y;) = —(z — x;).

Assuming m # 0, we have
_ Tzt my;
Y m m

and use this to solve for the intersection between the two lines:

m m

(m?+ 1)z = z; + my; — bm
_xj+my; —bm

m? +1
and then
x; +my; —bm
—m LT T
y=m m2 41 +
_ma:j+m2yj+b
N m? + 1 '
Observe that
xz; +my; —bm myj—bm—mzxj
e R
m? 41 ! m? +1
and that
mxj—l—mQyj—i-b_ - omzj+b—y;
m? +1 Toom24+1

Then the square distance is given by

my; — bm — m2x; ? ma; +b—y;\° o (maxj+b—y)?  (mxj+b—y;)?
m? 4 1 m? 4 1 ST 212 (m? +1)2
(mz; +b—1y;)?
m2 + 1 '

The partial derivative with respect to b has only Changed loy a multiplicative constant so we still have that
b =y — ma. Explicitly,

n

2 2

gi (mz; +b—y;)?
(%j:l m? +1
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To address the partia] derivative with respect to M, note that

0 (ma;+b-— yi)?  2x(m?* + 1) (maj + b —y;) — 2m(ma; + b — y;)?

m m* +1 B m* +
B 2 21 1)2
mx; +b—vy;
Then
" mzj + b — y
7j=1
if and only if
Z(mazj +b—y;)(z; —bm+ my;) =0.
j=1
Observe that

(ma; + b —y;)(x; — bm + my;) = m*zjy; — m*baj + ma;

which means
m*Yry — m*bXx + mBx? — mEy? + 2mbSy — nmb? + bXa — Yy = 0.
We collect the terms with factors of b and simplify. First, we simplify the terms with a single power of b:
—m2bXz + 2mbXy + bXx = —m?(§ — mz) Xz + 2m(§ — mI)Xy + (7 — mz) Sz
= —m2gSz + m3zXx + 2mySy — 2m2zXy + §Xr — mIXx

1
== [m?’ (2)? 4+ 2m (By)? — 3m?SaSy + LaXy —m (Ex)ﬂ
n

Next we simplify the term with a square b:
—nmb® = —nm(y — mz)?
= —nm((9)? — 2mzy + m*(z)?)
2
1

=—[-m Yy)? 4 2m2 Ly — m3(2x)2]

= —nm(9)% 4+ 2nm2zg — nm3(z)?
ol L

Hence,

—m?bXz + 2mbXy + bXx — nmb® = [m (Xy)? — m*aXy + XaXy —m (2:1:)2] .

SN

Multiplying
m?Szy — m?bEz + mEz? — mEy? + 2mbZy — nmb? + bXz — Szy =0
by n obtains

m? (nXzy — SzXy) +m (nE:rQ —nXy? + (Zy)* — (Ew)Z) — (nYzy — XzXy) =0
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or

m 4. nXa? — nXy? + (Zy)? — (Zx)?
nXry — 2x2yY
Let
1 n¥z? — nXy? + (Sy)? — (Sx)?

2 nury — My

a =

and notice that che solutions to

n¥z? —n¥y? + (Sy)? — (Sz)?

-1=0
nXxy — XrXy

m2+m

arem =a+ Va2 +1.

Though this method does yield results, the computational overhead is greater than the method presented
in Section 1.1. One may also imagine how tedious this approach would become when there is more than one
independent variable. We will provide some examples to examine potential differences between the methods.

1.2 Examples
Example 1.

The following tables contains observed data and some auxiliary quantities. All values were computed using a

spreadshect program SO some I'Ollﬁdil’lg CITOTS may occur.

y X \ Y | n 20
1.912947521 | 23.65814 XX | 40.12788796
1.759317921 | 22.94887519 XY | 483.6379939
3.311278431 | 31.76267182 X7 | 93.00063303
1.093271003 | 18.98024112 YY? | 12102.0174
2.175468756 | 24.89669254 YXY | 1041.618954
2.457015287 | 26.67881422 Vertical
0.2588599 | 14.24211082 m | 5.705388374
2.648008717 | 27.91796173 b| 12.73464042
2.397334955 | 26.54132455 Perpendicular
2.735146011 | 28.24804238 my | 5.708394706
2.824624841 | 28.87492603 by | 12.72860853
2.149242246 | 24.89958201 ms | —0.175180598
1.866919364 | 23.28936564 by | 24.53338106
1.436861463 | 20.96720411

2.202221549 | 25.36419647

1.324341565 | 20.4037108

3.387594944 | 32.0846165

1.003282658 | 18.45854908

0.997801647 | 18.39084681

2.186349182 | 25.03012205

In the values underneath the ‘Perpendicular’ label, m; = a + va? + 1 and mg = a — vVa? 4+ 1 where

1 nz? —n¥y? + (y)? — (Sz)?
2 nXxy — Jxrdy

a =
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as in the derivations. Then by = § — m1 T and bs = § — maXZ. We sce that the values m; and by are the
appropriate linear model for the observed data and that the difference between the standard least squares model

is minimal.

Example 2.

We now consider an example where the data are not approximately linearly related as they were in Example 1.
The format follows the format in Example 1. Again, all values were computed using a spreadsheet program so

some rounding CITOTS may occur.

X Y n 20
1.912947521 | 54.03677792 XX | 40.12788796
1.759317921 | 43.08854573 XY | 897.80653
3.311278431 | 74.00096191 X7 | 93.00063303
1.093271003 | 28.76392401 Y2 | 43408.48419
2.175468756 | 38.93272068 YXY | 1833.13123
2.457015287 | 45.88985983 Vertical
0.2588599 | 52.27123894 m | 2.544568191
2.648008717 | 25.41396484 b| 39.78491914
2.397334955 | 48.45117487 Perpendicular
2.735146011 | 37.80523453 my | 97.34937002
2.824624841 | 29.72250069 by | —150.4309042
2.149242246 | 45.55706305 mo | —0.01027228
1.866919364 | 50.00450035 by | 44.91093675
1.436861463 | 48.97881454
2.202221549 | 22.65972283
1.324341565 | 46.92592202
3.387594944 | 59.66573502
1.003282658 | 46.83425797
0.997801647 | 36.29521649
2.186349182 | 62.50839378

Example 3.

In this cxamplc, we use the same X values as in Examplc 2 but use Y = (X — 2)2. Particularly, there is

a dependence relationship between X and Y but it’s nonlinear. As usual, all values were computed using a
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spreadsheet program so some rounding CITOTS Mmay occur.

X Y n 20
1.912947521 | 0.007578134 XX | 40.12788796
1.759317921 | 0.057927863 XY | 12.48908119
3.311278431 | 1.719451124 X7 | 93.00063303
1.093271003 | 0.822157474 YY? [ 19.84224531
2.175468756 | 0.030789284 XXY | 22.79170937
2.457015287 | 0.208862973 Vertical
0.2588599 | 3.031568849 m | —0.181475445
2.648008717 | 0.419915297 b | 0.988565376
2.397334955 | 0.157875066 Perpendicular
2.735146011 | 0.540439657 my | 1.102954752
2.824624841 | 0.680006128 by | —1.588508176
2.149242246 | 0.022273248 ma | —0.906655507
1.866919364 | 0.017710456 by | 2.44356259
1.436861463 | 0.317125012

2.202221549 | 0.040893555

1.324341565 | 0.456514321

3.387594944 | 1.925419729

1.003282658 | 0.99344546

0.997801647 | 1.00440154

2.186349182 | 0.034726018

1.2.1  Generalization to Several Variables

Now suppose we have k independent variables 21, x2, . . ., f which we can represent as an k-dimensional vector
X = (xl, o, ..., xk) We wish to find a linear model for n observations {(Xl, yl), (Xz, yg), ce (Xn7 yn)}
Suppose our linear model is

L(x) = mex+b=mix +maxs + - + mpxg +b.

Then the method of least squares asks us to minimize

n

Z(mOXj +b— yj)2

Jj=1
where x; = (xj1,%j2,...,%jk). Then, for £ =1,2,... k,

9 n
%Z(m.xj +b—yj)2 = QZ:L'j’g(mOX]' —|—b—yj)
j=1 j=1

and
8 n n
2
%Z(m'xj +h—y)? =2 (mex;+b—y;).
j=1 i=1
Settlng these €quﬂl to zero aHOWS us to phrase the prOblem in terms Ofﬂ mﬂtriX eqllation as before When we

only had one independent variable. Then the problem of the linear regression hinges on finding an inverse for a

square matrix.
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As an exarnpie, let’s consider the case when we have two independent variables, x and y. We wish to find
constants a, b, and ¢ so that L(x,y) = ax + by + ¢ best fits the set of observations

{(1'172917 Zl)? (fIfQ, y27 22), MR} (xnv yn7 Zn)}

ThC equations we have now arce

n n

0
%Z(@%’ +byjte—z) =2) wjlax; +by; +c—z) =0,

j=1 j=1

0 < -
ap 2 Hby; o= 2)? =23 yi(aw;+by; +c - 2) =0,
j=1 J=1

and

0
%Z(axj +by; +c—z)? =2
Jj=1 J

n n
(ax; +by; +c—z;) = 0.
=1
After some simplification, we obtain

aXx? +bXxy + cXr = Yaz
aXzy 4+ bXy? + Xy = Syz
aXx + bXy 4+ nc =Xz

which is equivalent to the martrix equation

Y2 Yy Xz [a Yxz
Yy Sy Syl |b]| = | Syz
Y Xy n c Yz

As an additional exampie, the matrix equation Corresponding to three independent variables is

Y2 Yzy Yrz Yz [a Yxw
Yry Sy? Syz Xyl |b | Xyw
Yrz Yyz Xz2 Yz| |c| | Daw
Yx Yy Xz n d Yw
1.3 Coeflicient of Determination
For a set {y1, Y2, - .., Yn} of observations and a corresponding set of predictions {1, 92, . . . , Un }, we define

R2—1_ > iy — 7;)° _ > iy — y)? — >y — 3;)?
2 =1y — 9)? > iy —9)? '

Notice that, in this computation, if y; ~ ¥;, then R? ~ 1. Also, R? < 1 for any possible collection of

predictions ;.

Example 4.
We compute the R? values for the data in Examples 1, 2, and 3.
Example 1
Vertical Perpendicular
m, b mi, bl ma, b2
R? | 0.999457187 | 0.99945691 | —0.062317741
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Example 2

Vertical Perpendicular
m,b mi, by ma, by
R? | 0.026036158 | —36.11573083 | —0.000210637

Example 3
Vertical Perpendicular
m, b mi, bl ma, bQ
R? | 0.034149875 | —1.67655224 | —0.511162167

2 Logistic Regression

We'll motivate the scenario with a singlc independent variable. Consider a data set {(z1,91), (z2,92), -\ (Tn,yn)}
where y; € {0,1} for all j = 1,2,...,n. One can think of this as a two-coloring of the real numbers
L1, T2, ...,Tn. In particular, let T be colored red ifyj = 1 and blue otherwise. The goal oflogistic regression
is to find constants m and b so that
exp(mx + b)
p(x) =
1+ exp(max +b)

is a “good fit” for the data. We'll discuss what we mean by a good fit shortly.

The rcsulting model produccs a way to decide whether new observations should be classified as 0 or 1 in the
following way. First, notice that 0 < p(z) < 1 for any . We can decide on a threshold pg and then, for any
observation z, say that x is red if p(z) > po and blue otherwise. The choice of threshold will depend on the
potential consequences of labeling something as red/blue. However, given the threshold pg, consider

p(x) >po <= exp(mz +b) > po+ poexp(ma +b)
< (1 —po)exp(mz +b) > po
< exp(mz +b) > po/(1 —po)
< mz+b>In(po/(1—po))
< mx+b—1In(py/(1—po)) >0

That is, dcpcnding on the chosen threshold, our decision boils down to chccking the sign of a linear function in
terms of .

Now, suppose we have {(21, 91, 21), (¥2,Y2, 22), - . ., (T, Yn, 2n) } where z; € {0,1}. Like before, we
frame this as a two-coloring where (2, y;) is red if z; = 1 and blue otherwise. Recall that in the single variable
case, we arrived at a single point which separated the real line into two regions. Here, we will be ﬁnding aline in
the plane that aims to separate the blue from the red. Note that we can represent such a line with az+by+c = 0.
Then, given a point (x,y), we can make a prediction as to red or blue based on the sign of ax + by + ¢. Ina
similar way to the single variable case, we consider

exp(ax + by + ¢)
p(z,y) = :
1+ exp(az + by + ¢)

Notice that if the point (z,y) lies on the line, ax 4 by + ¢ = 0 which means p(x, y) = 0.5. If ax + by +c¢ > 0,
then p(z,y) > 0.5 and if ax + by + ¢ < 0, then p(x, y) < 0.5. The larger az 4 by + ¢ is, the closer p(z, y) is
to 1. In the discussion that follows, we’ll extend to k—many variables.

In one interpretation, the function p(z) is intended to reflect probabilities; that is, p(x) is supposed to
be P(y = 1|x). One reason to choose the form of p(z) is for its relative ease in terms of computation. The
complication with using the cumulative density for a Gaussian, or normal, distribution is that it’s not expressible
as a closed form function. Some other candidates are translations of the arctangent and the hyperbolic tangent.
Nevertheless, we'll presently entertain the standard choice.
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2.1 The Objective

Assume we've chosen a prediction function

exp(mlxl + moxg + - + M + b)

T1,22,  * ,Tk) =
CITEEINRED) 1+ exp(miz1 + moza + - - - + mpawg + b)
given a set
{(':Ul,lv L1,2y+ 5Tk, y1)7 (':UQ,lv X222y« T2k, y2)7 sy (:Un,la T2y« -5 Tnk, yn)}
of observations where y; € {0,1}. Lee m = (mq1,ma,...,my) and X; = (j1,22,...,%;j%) and notice

that we can rewrite the prediction function as

(x) = exp(m e x + b)
P 1+ exp(mex+b)

We call the quantities m1, ma, ..., myg, b the weights.

Now we compare the prediction values against the observed values. For any y; = 1, notice that the predic-
tion model says that P(y; = 1|x;) = p(x;) = p(x;)¥% and that (1 — p(x;))* ™% = 1. For any y; = 0, notice
that the prediction model says that

P(y; = 0x;) =1— P(y; = 1x;) = 1 — p(x;) = (1 — p(x;))' ¥

and that p(x;)¥% = 1. Assuming all observations are independent, the probability we obrtain the observed data
assuming the probabilities given by p(x) is

n

J(m,b) = [ [ o(x;)% (1 = pl(x) .

J=1

Now, this is the function we wish to optimize, in particular, to maximize it since that would mean we maximize
the likelihood of the observed data given the predictions determined by p(x). To simplify matters a bit, let’s
find the optima of the corresponding 10garithm:

In (J(m, b)) = Zyj In(p(x;)) + (1 = y;) In(1 - p(x;))

Observe that

exp(m e x; + b)
1+ exp(m ex; +b)

In(p(x;)) =1n < ) =mex;+b—In(l+exp(mex;+0b))

and

w0 -s (1 - S

1
=1
" (1—|—exp(moxj +b)>
= —In(1 + exp(m e x; + b)).
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Hence,

NE

In(J(m, b)) = > y;n(p(x;)) + (1 = y;) In(1 = p(x;))
j=1
=3 s(m e+ b (1 explmoex; £ ) + (1) (~ In(1 + exp(m e x; +5))
j=1
= Z m e x;y; + by; — In(1 + exp(m o x; + b))
j=1
n k n
ngl‘j,gyj + by — Z In(1 4 exp(m e x; + b)).
j=1 =1 =1
Then, for £ = 1,2,...,k,
0 zjrexp(mex; +b) -
1 _ Js J — ) . .
Ty ij e, Z T oxplm ey +8) — 2 e~ 20
and
0 exp(m e x; + b) -
—1 =3 J — Co(x).
o In(J(m Y- Zl+exp (e 1 1) =y —p(x))

Jj=1
Setting these equal to zero doesn’t yield closed form solutions, in general. We will require numerical techniques.

Before we discuss a method to approximate solutions, let’s check concavity by computing the second deriv-
atives. We check concavity since it communicates information concerning local extrema. First, check that, for

0=1,2,.. .k
Op (14 exp(mex +b))exp(m e x + b) — zypexp(m e x + b)?

ome (1+exp(mex+b))?2
xgexp(m e x + b)

(1 + exp(m e x + b))2

and that
dp  (1+exp(mex+b))exp(mex+b) — exp(m e x + b)?
ob (1 + exp(m e x + b))2
_ exp(mex+b)
(14 exp(mex+b))2’

It follows that

52 n arjz’g exp(m e x; + b)

Tm% In(J(m, b)) = — J; (1+ exp(m e x; + b))?

for =1,2,...,k and that

52 _ __ exp(mex;+b)
o5z (7 (m, b)) = _; (1+ exp(m e x; + b))

Unless all x; are zero, the second derivative with respect to any of the weights are negative. Hence, the function
ln(J(m, b)), when restricted to one weight, would attain a unique maximum, if a maximum exists.
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2.2 Gradient Descent

Recall that the direction of most rapid ascent is the gradient. This section is titled “Gradient Descent” due to
the most common name of this tcchniquc which is used to find minima. However, since we're trying to find a
maximum here, we will be using gradient ascent.

The basic idea is the following.

L Initialize (my, ma, ..., mg,b) to be arbitrary.
2. Adjust the (mq,ma, ..., my, b) by moving along the gradient by some scaling constant p. That is, set
the new (my,ma, ..., mg, b) by

n
mp =me+p- > wie(y; — p(x;))
j=1
and .
D =btp Dy~ plx;)
j=1
The task of finding an efficient scaling constant p will not be addressed here.

2.3 Examples
Example 5.

Suppose we are given the following observations:

2yl o ylx ylz y
117 0]1.27 0]1.16 0145 0
133 0]1.12 0]1.36 0125 0
133 0130 0]142 0]1.33 0
172 1170 1]1.88 1|1.71 1
158 1181 1]1.70 1]1.63 1
182 1175 1]1.63 1]1.90 1

We use a scaling coefficient of 1 in the gradient ascent and apply 100 iterations. The equation produced is
0 = 50.54714424495551x — 76.56101204614309

which translates to  ~ 1.5146456479345755. Graphically,

—_—0—00000—00— —0-0—8 00—

1.515
Example 6.
Suppose we are given the following observations:
’ T y oz ‘ x y oz ‘ z y z| x y z| = y oz
094 099 0141 062 1(1.05 1.19 0/0.79 143 0|1.51 064 1
142 128 1119 148 0(0.67 121 0]0.72 062 0139 067 1
0.89 087 0091 074 0124 113 1081 095 0|1.11 155 O
1.29 1.11 1154 081 1]098 097 0]1.23 0.88 1(/0.61 0.60 0O
126 082 1138 0.76 1132 120 1|/106 1.14 0]1.14 1.39 O
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We use a scaling coeflicient of 1 in the gradient ascent and apply 100 iterations. The equation produced is
0 = 47.49556536544975x — 28.459417864950904y — 24.237777075778855.

Graphicaﬂy,
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